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We present a detailed investigation of the parametric subharmonic resonance
mechanism that leads a plane, monochromatic, small-amplitude internal gravity wave,
also referred to as the primary wave, to instability. Resonant wave interaction theory
is used to derive a simple kinematic model for the parametrically forced perturbation,
and direct numerical simulations of the Boussinesq equations in a vertical plane
permit the nonlinear simulation of the internal gravity wave field. The processes that
eventually drive the wave field to breaking are also addressed.

We show that parametric instability may be viewed as an optimized scenario
for drawing energy from the primary wave, that is, from a periodic flow with
both oscillating shear and density gradient. Optimal energy exchange maximizing
perturbation growth is realized when the perturbation has a definite spatio-temporal
structure: its energy is phase-locked with the vorticity of the primary wave. This
organization allows the perturbation energy to alternate between kinetic form when
locally the primary wave shear is negative, then maximizing kinetic energy extraction
from the primary wave, and potential form when the primary wave shear is positive,
then minimizing the reverse transfer to that wave. The perturbation potential energy
increases through the primary wave density gradient whether the latter is positive,
that is when the medium is of reduced static stability, or negative (increased static
stability). When the primary wave amplitude is small, all energy transfer terms are
predicted well by the kinematic model. One important result is that the rate of
potential energy transfer from the primary wave to the perturbation is always larger
than the rate of kinetic energy transfer, whatever the primary wave.

As the perturbation amplifies, overturned isopycnals first appear in reduced static
stability regions, implying that the total field should become unstable through a
buoyancy induced (or Rayleigh–Taylor) instability. Hence, a two-dimensional model
is no longer valid for studying the subsequent flow development.

1. Introduction
A plane, linear, monochromatic internal gravity wave – termed the primary wave –

in an inviscid stably stratified fluid under the Boussinesq approximation is unstable
to infinitesimal perturbations. This was first shown by resonant wave interaction
theory for weak steepness waves, i.e. s � 1 (Phillips 1966; Thorpe 1966; Hasselmann
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1967) and subsequently by linear stability analysis for arbitrary steepness waves.
When the primary wave steepness is smaller than 1 (i.e. the isopycnals are not
overturned), a stability analysis of two-dimensional perturbations can be conducted
(Mied 1976; Klostermeyer 1982), which reduces to resonant interaction theory in the
limit of vanishing primary wave steepness (Drazin 1977). When the primary wave
steepness is larger than 1 (the isopycnals are locally overturned), a stability analysis
of three-dimensional perturbations has to be conducted in order to capture the
most amplified modes (Klostermeyer 1991; Lombard & Riley 1996a; Sonmor &
Klaassen 1997; see Staquet & Sommeria 2002 for a review). The main result of the
linear stability analysis is that an internal gravity wave is unstable however large the
associated Richardson number (this parameter is a measure of the stabilizing effect
of the background stratification relative to the destabilizing effect of the vertical wave
shear). For small-scale perturbations, the instability is of the parametric sub-harmonic
type. The first experimental evidence was provided by Davis & Acrivos (1967) for
gravity waves propagating at a thin density interface and by Martin, Simmons &
Wunsch (1972) for waves propagating in a long channel uniformly stratified with
salt water (see Phillips 1981 for a review). The parametric instability mechanism in a
stratified fluid has received new theoretical interest when forcing occurs via a time-
oscillating non-parallel velocity field (Majda & Shefter 1998, Leblanc 2003). Majda &
Shefter (2003) thus showed that the dominant instability is a purely two-dimensional
parametric instability whatever the stratification level, in agreement with the results
of linear stability analysis for an internal gravity wave of steepness s < 1.

In the present paper, we investigate the mechanisms that lead a monochromatic
progressive internal gravity wave of small steepness to instability. As attested by the
references cited above, much attention has been given to this academic problem but,
to our knowledge, the energy exchange process between the primary wave and the
perturbation, and the subsequent nonlinear development of the perturbation have
not been addressed in detail. This is the purpose of the present paper. We show that
parametric instability may be viewed as an optimized scenario for drawing energy
from the primary wave and that the amplified perturbation eventually destabilizes the
whole wave field through a buoyancy-induced (or Rayleigh–Taylor) instability. Hence,
a two-dimensional approach cannot be pursued further to study the subsequent flow
development.

The study of nonlinear dynamical processes among internal gravity waves relies
traditionally on laboratory experiments and on numerical simulations, and to a
lesser extent on field observations (e.g. Thorpe 1966). Laboratory experiments usually
involve standing waves (McEwan 1971; McEwan, Mander & Smith 1972; McEwan &
Robinson 1975; Benielli & Sommeria 1998) or partially standing waves (Martin et al.
1972; Teoh, Ivey & Imberyer 1997), which are easier to generate in laboratory
installations than progressive waves. In most numerical works reported in the
literature, the statistical properties of a deterministic or of a random internal wave
field are investigated in a vertical plane (for instance Orlanski & Cerasoli 1981;
Frederiksen & Bell 1983, 1984; Chen & Holloway 1986). In Carnevale & Martin
(1982) and Holloway (1979), these properties are compared to a statistical model (a
review was made by Muller et al. 1986). Owing to the availability of high performance
computers, recent numerical works have been able to address deterministic processes
in both two and three dimensions. Lombard & Riley thus performed two- and three-
dimensional numerical simulations of an unstable monochromatic progressive primary
wave (Lombard & Riley 1996b), thereby complementing a linear stability analysis
of this wave against three-dimensional perturbations (Lombard & Riley 1996a).
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Bouruet-Aubertot, Sommeria & Staquet (1995) investigated the parametric instability
mechanism of the standing primary wave analogue to the progressive primary wave
that we consider in the present paper. As in Bouruet-Aubertot et al. (1995), we use
resonant interaction theory to determine the most unstable resonant triads that govern
the parametric instability growth; the novelty of the present work lies in a detailed
analysis (i) of the energetics of the instability mechanisms, using two-dimensional
numerical simulations and a simple kinematic model of the parametrically amplified
perturbation, and (ii) of the nonlinear development of the perturbation field.

We shall assume that the primary wave propagates in a homogeneous medium
at rest so that it will not be refracted by a spatially varying stratification or mean
flow (see for instance Sutherland 1999, 2000 for the latter problem). The effect of the
Earth’s rotation, through the Coriolis force, will also be ignored (we refer to Miyazaki
& Adachi 1998a, b and Lelong & Dunkerton 1998a, b for this subject).

The outline of the paper is as follows. In § 2, we present the equations of motion and
describe the numerical model. Section 3 is devoted to a brief description of the overall
behaviour of the wave field. The detailed investigation of the instability processes is
addressed from § 4 onwords. In § 4, the parametric instability is studied in Fourier
space, using resonant interaction theory; we show that the perturbation growth is
controlled by a few resonant triads, which may be assumed to evolve independently
during the early stage of the wave-field evolution. This permits us to derive a simple
kinematic model, that relies upon one resonant triad only, to address the parametric
instability process (§ 5). The energetics of the latter process are investigated in physical
space in § 6. The instability mechanisms eventually leading the whole wave field to
breakdown are addressed in § 7 and conclusions are drawn in a final section.

2. Equations of motion and numerical model
We consider the dynamics of a Newtonian fluid in a Cartesian coordinate frame

x = xex + yey + zez subject to a constant gravitational field g = −gez. The fluid
is linearly stratified and its dynamics are governed by the Navier–Stokes equations
in the Boussinesq approximation (see e.g. Cushman-Roisin 1994). The velocity field
u = (u, v, w) is assumed to be incompressible, i.e. ∇ · u = 0. The pressure and density
fields are split into hydrostatically balanced parts (p0 and ρ0 + ρ̄) and fluctuating
(p̃ and ρ̃) parts such that p = p0(z) + p̃(x, y, z, t) and ρ = ρ0 + ρ̄(z) + ρ̃(x, y, z, t),
respectively; ρ0 is a constant reference density and ρ̄(z) is the initial background
density profile, assumed to be linear. The hydrostatic density field sets the Brunt–
Väisälä frequency, whose square is defined by N 2 = −((g/ρ0)(dρ̄/dz )); N is therefore
constant in our study.

Hereinafter, we assume two-dimensional fluid dynamics in the vertical (x, z)-plane.
Incompressibility is satisfied by introducing the streamfunction ψ(x, z, t) such that
u = ∂ψ/∂z, w = −∂ψ/∂x and ζ = ∇2ψ , where ζ denotes the two-dimensional
vorticity scalar field. The Navier–Stokes equations in the Boussinesq approximation
in terms of the streamfunction and fluctuating density fields are

∂∇2ψ

∂t
+ J (∇2ψ, ψ) =

∂ρ ′

∂x
+ ν∇4ψ, (1)

∂ρ ′

∂t
+ J (ρ ′, ψ) = −N 2 ∂ψ

∂x
+

ν

Pr
∇2ρ ′. (2)

As is customary, we have introduced the reduced density fluctuations ρ ′ = (g/ρ0) ρ̃ in
order for the Brunt–Väisälä frequency to appear in equation (2). ν is the kinematic
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viscosity and Pr is the Prandtl number. J (A, B) = (∂A/∂x)(∂B/∂z)− (∂A/∂z)(∂B/∂x)
is the Jacobian operator.

The computational domain is a square of side length 2π, and periodic boundary
conditions are applied to the flow fields. Equations (1) and (2) may thus be integrated
using a standard pseudospectral collocation method (e.g. Canuto et al. 1988) whereby
the equations of motion are solved in Fourier space. The nonlinear terms give
rise to the computation of convolution sums in Fourier space which are evaluated
more cheaply in physical space instead, but at the expense of generating aliasing
errors. These are eliminated with the help of a standard truncation method of
the Fourier coefficients. The equations of motion are integrated in time using an
explicit third-order Adams–Bashforth scheme. Molecular effects are modelled by a
Laplacian operator with constant coefficients (ν and ν/Pr) implying that the reported
simulations are direct numerical simulations (DNS). The Prandtl number is constant
in our simulations and the kinematic viscosity is adjusted using the balance of energy.
A numerical simulation is validated when this balance is satisfied to within a 1 %
error at most. The largest (1 %) error occurs during wave breaking, that is when the
flow is strongly nonlinear.

The initial condition of the computations is a plane, monochromatic, large-scale
(relative to the domain side) internal gravity wave, termed the primary wave. Let
k = (k, m) and ω denote the wave vector and frequency of the wave, respectively. The
linear dispersion relation sets the dependency of ω upon k:

ω2 = N2 cos2 θ = N 2

(
k

κ

)2

, (3)

where θ is the angle between the wave vector and the horizontal and κ =
√

k2 + m2

is the wave vector modulus. We shall use the convention that frequencies are positive
(except in § 4). The linear polarization relations for such waves are thus given by (see
Gill 1982 for instance)

ψ(x, z, t) = A sin(k · x − ωt), ρ ′(x, z, t) = sg(k)ANκ sin(k · x − ωt), (4)

where A is the streamfunction amplitude of the wave; the coefficient sg(k) is the sign
of k and results from the positive frequency convention.

The steepness s = umax/cx provides a non-dimensional measure of the wave
amplitude and has the useful physical meaning that isopycnals are locally vertical
when s = 1; umax is the maximum wave-induced velocity along the x, say, horizontal
direction and cx is the phase velocity of the wave along that same direction. For the
monochromatic wave (4), the steepness is expressed as

s =
Amκ

N
. (5)

A non-dimensional measure of the wave amplitude is also provided by the Foude
number Fr = U/NL, where U and L are a typical wave-induced velocity and length
scale, respectively. Taking U = Aκ and L =1/κ , Fr and s are simply related by
Fr = (κ/m)s for the monochromatic wave (4).

Since the plane wave (4) is a solution of the fully nonlinear equations of motion,
(1)–(2), it is perturbed at initial time by a random noise in order to trigger instability.
The noise spectrum is normalized such that the total perturbation energy is 10 orders
of magnitude smaller than the primary wave energy.

Table 1 recapitulates the physical and numerical parameters used in the simulations.
Primary wave attributes are denoted in the following by a 0 index, e.g. s0. The main
feature is that k0 = (1, 1) in all DNS reported, so that θ0 = 45◦. Since we shall
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Run A0 s0 ν 	t

0 0.064 0.09 3.75 × 10−5 0.016
1 0.128 0.18 0.75 × 10−4 0.008
2 0.256 0.36 1.5 × 10−4 0.004
3 0.5 0.71 3.0 × 10−4 0.002

Table 1. Numerical and physical parameters of the simulations. A0 is the initial amplitude
of the streamfunction of the primary wave and s0, defined by (5), is the steepness associated
with the primary wave. ν is the kinematic viscosity and 	t is the time step. For all runs, the
wave vector of the primary wave k0 is equal to (1, 1), the Brunt–Väisälä frequency N and the
Prandtl number have a value of 1 and the resolution is (512, 512).
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Figure 1. (a, b) Domain-averaged kinetic energy 〈KE〉 (full line) and potential energy 〈PE〉
(dashed line) of the flow normalized by the total (kinetic + potential) energy at t = 0 versus
time (in Brunt–Väisälä periods) for all runs; the run number is indicated. The decay of
the primary wave energy owing to molecular effects only is plotted using a dotted line. In
(b), 〈KE〉 and 〈PE〉 are plotted versus time scaled by the Froude number of the primary wave
Fr0. (c) Domain-averaged kinetic energy 〈KE′〉 and potential energy 〈PE′〉 of the perturbation
for the four runs, versus time scaled by Fr0 (the energy level increases with the run number at
a given time).

investigate the energetics of the parametric instability using resonant interaction
theory, we shall consider a weak steepness primary wave. This is run 0 in the table.
We shall also investigate the influence of a finite steepness on the instability and this
is why s0 is varied from 0.09 to 0.71. Since the spatial resolution of all DNS is the
same, the time step and the viscosity are varied in accordance with changes in A0 in
order to satisfy the Courant criterion and the energy balance mentioned above. Most
of our results are presented in units of time normalized by the Brunt–Väisälä period
TBV = 2π/N , also referred to as BVP.

3. Overall energetics of the wave field
The temporal evolution of the domain averaged kinetic and potential energy of

the flow per unit mass, 〈KE〉 = 〈(u2 +w2)/2〉 and 〈PE〉 = 〈(ρ ′/N )2/2〉, respectively, are
displayed in figures 1(a) and 1(b) for all runs. A domain average is denoted as 〈 〉
throughout the paper. Figure 1(c) displays the domain averaged kinetic and potential
energy of the perturbation, 〈KE′〉 and 〈PE′〉 respectively, for the same runs. 〈KE′〉
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and 〈PE′〉 are defined in Fourier space by summing all mode contributions except for
the primary wave.

The overall behaviour of 〈KE〉 and 〈PE〉 consists of a general decrease, because
the primary wave is not forced. Three stages can be distinguished in time.

During the first stage, the decay of the kinetic and potential energy of the flow
is dominated by molecular dissipation: this is attested by the dotted line plotted in
figure 1(a), which is the temporal evolution of either energy subjected to molecular
effects only. Figure 1(c) shows that the perturbation kinetic and potential energy grow
exponentially during this stage and remain very close. As we shall see, the perturbation
draws energy from the primary wave mostly through resonant interactions. The
corresponding loss of energy for the primary wave is, however, not visible in figure 1(a)
because the perturbation has a very low energy level.

There follows a change in the flow behaviour, characterized by a sudden decrease
of the overall flow energy (figure 1a) and by the saturation and dissipation of the
perturbation energy (figure 1c). The wave field starts breaking from this time, which
we shall refer to as the breaking time. The breaking process results from the instability
of the whole wave field, as will be shown in the final part of the paper. This instability
is triggered by the increase in amplitude of the perturbation (and not of the primary
wave).

A relaxation regime eventually follows, during which kinetic energy exceeds
potential energy for the highest-amplitude runs. Since the domain-averaged kinetic
and potential energy are controlled by the energy content of the largest scales,
this behaviour may be attributed to the higher transfer rate of potential energy than
kinetic energy toward small scales, as we show later in this paper; the two-dimensional
geometry of the computations (which prevents kinetic energy from being transferred
toward small scales) may also come into play.

In the absence of viscous and diffusive effects, the growth rate of the perturbation
from resonant interactions is proportional to the primary wave amplitude A0 (see
equation (8) below), so that the breaking time should be proportional to 1/A0, in
the limit of small viscosity. This is attested in figure 1(b) where 〈KE〉 and 〈PE〉 are
plotted versus time multiplied by Fr0: the breaking time for the low steepness runs 0,
1 and 2 no longer depends upon the primary wave amplitude with this scaling. The
curves match up to the breaking time, but separate from this time on, indicating that
a new flow regime commences. Also, in figure 1(c) where the same time scaling is
used, the perturbation energy grows at the same rate and saturates at the same time
for runs 0, 1 and 2. We note from figure 1(c) that the perturbation grows at a higher
rate for run 3 than for the other runs, consistent with breaking occurring at an earlier
time for this run (see figure 1b). This implies that, in run 3, the finite amplitude of
the primary wave affects the instability process.

In the standing-wave simulations of Bouruet-Aubertot et al. (1995), the same
evolution of the energy of the overall flow and of the perturbation was found, except
that the breaking time scales as 1/A2

0 in this case, owing to the difference in initial
and boundary conditions.

4. Resonant interaction theory
In this section, we apply resonant interaction theory to the two-dimensional

simulations and show that the growth of the perturbation is controlled by a few
parametrically resonant triads of comparable growth rates, the values of which are
predicted well by the theory.
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4.1. Background

Resonant interaction theory may be used to investigate the stability of a primary
wave whose steepness is much smaller than 1.

Interactions among gravity waves in a stratified fluid occur within triads, because of
the quadratic nonlinearity of the equations of motion. At first order in an expansion
in the normalized wave amplitude, efficient wave interactions occur if, in addition to
the usual spatial resonance condition

k0 + k1 + k2 = 0, (6)

a temporal resonance condition is also satisfied (Phillips 1977)

ω0 + ω1 + ω2 = 0, (7)

where (ki , ωi)0�i�2 are the wave vector and frequency of the members of the triad. In
this section only, we follow the convention that both negative and positive frequencies
are possible, to avoid negative signs in the temporal resonance condition. When a
primary wave (associated with index i = 0) interacts with two secondary waves of
much smaller amplitude, resonant interactions among this triad may lead to instability
of the primary wave. As proved by Hasselmann (1967), this occurs when the frequency
(in absolute value) of each secondary wave is smaller than the primary wave frequency
(in absolute value as well): these are sum interactions |ω1| + |ω2| = |ω0|. By contrast,
difference interactions | |ω1| − |ω2| | = |ω0| are neutrally stable. In principle, triads
are coupled with each other, since any member of a triad may also be involved in
other triads (an instability process involving coupled triads is discussed in Chow,
Henderson & Segur 1996). In the present paper, we only consider one class of triads,
those involving the primary wave (k0, ω0), and assume all triads to be isolated from
each other. As we shall see, this simplified approach proves to account adequately for
the instability of the primary wave in our numerical simulations.

In the following, waves distinct from the primary wave will be referred to as
secondary waves, the set of the latter waves forming the perturbation. This is valid in
the early stage of the flow development, when the coherence of the primary wave is
preserved. Resonantly excited secondary waves will be referred to as resonant waves.

4.2. Resonant traces and unstable secondary waves

The resonance conditions (6)–(7) may be solved numerically for a given primary wave
(k0, ω0). Following Phillips (1977), the loci of the tip of, say, k1 define the resonant
traces. These traces are plotted in figure 2(a) for the primary wave k0 considered
throughout the paper. The third member of the triad k2 is easily inferred from the
spatial resonance condition as indicated in the figure. The branches labelled A, B, D
and E and the arcs connecting A and B, and D and E, correspond to sum interactions.
In the limit of large wave vector moduli, the branches (and consequently the wave
vectors lying along them) have as asymptotes the straight lines whose angle with the
horizontal, denoted θ1/2, meets |cos θ1/2| = |cos θ0|/2. The corresponding frequencies
therefore meet |ω1/2| = |ω0|/2, so that the branches are called parametric sub-harmonic
instability branches (Phillips 1977). The triads defined by the closed loops labelled C
and F correspond to difference interactions and are therefore neutrally stable.

The traces may now be used to identify the secondary waves most unstable to
parametric sub-harmonic instability in the numerical simulations: these are the sets
of pairs of wavenumbers located at grid points lying on or close to the resonant
branches A, B, D and E and whose distance from each other is the primary wave
vector. Resonant waves whose energy exceeds 10−4 parts of the instantaneous primary
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Figure 2. (a) Theoretical resonant traces for the primary wave k0 = (1, 1). The traces result
from the plot of the tip of wave vector k1, given a wave vector k2 such that the resonance
conditions are satisfied. One such resonant triad is drawn using dashed lines for k1 and k2.
(b) Superposition of the most unstable resonant waves found numerically for run 2 (∗) upon
the theoretical resonant traces displayed in (a). For illustration, the waves with wave vectors
(2, 6) and (−3, −7) (which form triad T1 with the primary wave) are drawn with a black circle.
Resonant traces corresponding to kx < 0 have been reflected through the origin, owing to the
Hermitian symmetry of the fields in Fourier space. The numerical grid is also displayed.

wave energy are displayed in figure 2(b) for run 2. This threshold test is validated
as long as the root mean square (r.m.s.) vorticity of the flow is less than the Brunt–
Väisälä frequency (following Bouruet-Aubertot et al. 1995), to ensure that resonant
interaction theory is assessed well before wave breakdown.

It is apparent that the instability dynamics are controlled by a few resonant
triads (as well as by other off-resonant waves). All of these excited waves lie very
close to or in the neighbourhood of branches A and D. In figure 2(b), the triads
[k0, k1, k2] = [(1, 1), (−2, −4), (1, 3)], denoted T0, T1 = [(1, 1), (−3, −7), (2, 6)], T2 =
[(1, 1), (−4, −10), (3, 9)] and T3 = [(1, 1), (−5, −12), (4, 11)] can be identified as being
resonantly excited by the instability process (the same result is observed for the other
runs, including run 3). Because the discrete nature of the computational grid quantizes
the wavenumbers, none of these triads meets the temporal resonance condition (7)
exactly. Indeed, the frequency detuning ω0 + ω1 + ω2 is equal to −0.056 for triad T0,
with each frequency being of order 1, to −0.019 for T2 and T3, and to −0.0030 only for
triad T1. Hence, the latter triad meets the temporal resonance relation most closely.
Strict temporal resonance is not required for the existence of resonant triads as shown
by McEwan & Plumb (1977) and discussed by Craik (1985), but instead it need only
be satisfied within a precision of the order of the steepness. Note that the quantization
by the grid size becomes insignificant for high wavenumbers. In a viscous fluid, the
high-wavenumber waves are actually damped by viscous and diffusive effects so that,
in a numerical simulation, the most unstable resonant waves are selected by viscous
and diffusive effects and by the grid size.

The triad T1 was also found to be the most resonant one by Bouruet-Aubertot et al.
(1995) in the standing primary wave case, probably because the initial condition of
their computations is a superposition of four counter-propagating progressive waves
with wave vector (±1, ±1). They also observed many temporally non-resonant triads
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and isolated secondary wave modes, which were interpreted as being entrained by
nonlinear interactions with the resonant triads.

4.3. Growth rates of the resonant waves

4.3.1. Growth rates predicted by resonant interaction theory

The growth rates of resonant waves are easily predicted by the resonant interaction
theory at first order, if it is assumed that the primary wave amplitude remains
constant during the growth of the resonant waves and that the amplitudes of these
waves are simply damped by molecular effects (McEwan & Plumb 1977). As a result,
the resonant waves (k1, ω1) and (k2, ω2) may amplify exponentially in time, with
growth rate

λ = − 1
2
(T1 + T2) +

[
1
4
(T1 − T2)

2 + S1S2

A2
0

4

]1/2

, (8)

provided λ is real and positive. Ti = 1
2
ν(1 + 1/Pr)κ2

i is the linear damping factor of
wave i in the triad, i = 1 or 2 and Si is the interaction coefficient:

Si =
1

2κ2
i ωi

[
ωi

(
κ2

p − κ2
q

)
+ N 2ki

(
kp

ωp

− kq

ωq

)]
(mqkp − mpkq), (9)

where p and q assume different integer values selected from 0, 1 or 2. Equation (8)
shows that unstable solutions are possible provided that (i) S1S2 > 0 and (ii) the
constant amplitude A0 of the primary wave exceeds the threshold value given
by: Ath = 2

√
T1T2/S1S2. The first condition may be shown to be equivalent to

Hasselmann’s (1967) criterion discussed in § 4.1. The second condition ensures that
growth due to nonlinear interaction is larger than decay due to molecular effects.

For very large wavenumbers of the resonant waves, resonance occurs through
parametric instability and, in the inviscid case, their growth rate tends toward the
asymptotic expression

λ∞ = 1
8
A0κ

2
0 cos2θ0[tan(θ1) − tan(θ0)][3 − sin(θ1 − θ0)tanθ1], (10)

with θ1 such that cosθ1=(cosθ0)/2. Equation (10) matches an equivalent expression
proposed by Sonmor & Klaassen (1997) (but note that κ0 is set to 1 in their analysis
and therefore, does not appear in their expression; also the amplitude A in their
expression is twice ours: A = 2A0).

The growth rates associated with the four branches A, B, D and E are plotted in
figure 3 both for the inviscid and viscous cases, for run 2 (that is, the values of A0

and ν in (8) are those of run 2). The value of the threshold amplitude for this run
is Ath = 3.68 × 10−2, which is lower than A0 (= 0.256) so that secondary waves can
be parametrically excited. The value of λ∞ is equal to 0.10 for run 2. Figure 3(a)
shows that, in the inviscid limit, this value is approached to better than 1 % when
κ1 � 7. However, viscous and diffusive effects have a strong influence and select
rather large-scale resonant waves, as the growth rate is now maximum for κ1 � 5.
For κ1 � 2, triads lying along branches B and E have smaller growth rates than
triads lying along branches A and D. This is consistent with the results found in the
threshold test discussed above, where no excitation of waves lying along branches B
and E was found.

4.3.2. Growth rates computed from DNS

In this section, we compare the growth rate of resonant waves selected by the
numerical threshold test (discussed in § 4.1) to the theoretical prediction, (8). Results
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Figure 3. Theoretical predictions of the inviscid and viscous growth rates (defined by (8)) for
the parameters of run 2, as a function of the modulus of wavenumber k1 (denoted κ1), along
the branches displayed in figure 2(a). The growth rates are normalized by the Brunt–Väisälä
frequency.
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Figure 4. (a) Absolute value of the vorticity of resonant waves (2, 6) and (−3, −7) as obtained
from DNS run 2 (full lines) compared with theoretical growth rate (8) from resonant interaction
theory in the inviscid limit (dotted line) and when molecular effects are taken into account
(dashed line); (b) DNS results only: absolute value of the vorticity of resonant waves (2, 6)
and (−3, −7) (full lines), (3, 9) and (−4, −10) (dash-dotted lines), (4, 11) and (−5, −12) (dotted
lines) and maximum absolute value of the perturbation vorticity (dashed line).

for triad T1 in run 2 are displayed in figure 4(a); the vorticity (in absolute value)
of the resonant waves in this triad is plotted versus time, using a log–lin scale. The
vorticity of each wave grows exponentially at the same rate and, at least during 15
Brunt–Väisälä periods or so, this rate matches the theoretical viscous growth rate.
We performed the same comparison between numerical and theoretical growth rates
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Figure 5. Detailed structure of the primary internal gravity wave k0 = (1, 1) for run 2.
Constant density lines and constant phase lines of the wave are displayed. Areas with increased
or reduced static stability are denoted by ISS or RSS, respectively, and delimited by thick
phase lines. Shaded areas are associated with negative primary wave vorticity ζ0 < 0 and light
areas with positive vorticity ζ0 > 0.

for triads T2 and T3 in the same run (not shown). A stronger difference between
the viscous and inviscid growth rates is observed because the wavenumber of each
resonant wave is higher than for triad T1. As for the latter triad, the numerical growth
rate matches well the theoretical viscous growth rate during the early stage of the
instability development.

The numerical growth rates of the resonant waves in these three triads are
superimposed in figure 4(b). All three rates are comparable, with the triads T1 and T2

growing at the same rate during 15 TBV or so. The maximum value over the numerical
domain of the vorticity of the perturbation is also displayed in the figure. Its growth
rate is very close to that of the resonant triads. This implies that the resonant process
controls the instability of the primary wave, through the parametric excitation of a
few waves with nearly identical growth rates, which entrain the non-resonant waves
of the flow. This is an important result for our analysis of the parametric instability.

5. The structure of the instability in physical space
In this section, we derive a simple kinematic model of the instability in physical space

based upon a single resonant triad, in which the secondary waves are parametrically
forced by the primary wave. We show in particular that the model reproduces very
well the vorticity field of the perturbation computed from DNS.

5.1. The spatial structure of a linear internal gravity wave

Figure 5 shows the detailed structure of the primary internal gravity wave we consider
throughout the paper, plotted in a (2π)2 periodic geometry for run 2. The phase lines
propagate along the direction defined by k0, i.e. towards the upper right-hand corner
of the domain. At any given time, the domain may be subdivided into areas defined
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by the internal wave properties. Thus, we distinguish zones according to the sign
of the primary wave vorticity ζ0, shaded areas corresponding to ζ0 < 0 and light
areas to ζ0 > 0. In § 6.3, these areas will also be referred to as an N region and a
P region, respectively. Similarly, we distinguish zones according to the sign of the
vertical density gradient of the primary wave. Positive values of this gradient reduce
the static stability set by the background stratification and negative values increase
that stability; the former zone will be denoted by RSS and the latter by ISS. Zones
defined by the sign of the vorticity ζ0 overlap evenly with zones defined by the sign
of the vertical density gradient, because these two fields are out of phase by π/2. All
zones considered translate in time at the phase speed of the primary wave.

5.2. A simple model for the kinematics of the resonant secondary waves

The resonant interaction theory applied in the last section has led to the conclusion
that the primary wave instability is governed by a few resonant triads, selected
among all possible resonant triads by the molecular properties of the fluid (viscosity
and diffusivity) and by the grid size. The secondary waves involved in these triads
have approximately the same amplitude and grow at about the same rate, which
agrees well with the theoretical growth rate. A basic assumption of the theory is
that these triads do not interact with each other. The triads may thus be assumed
to grow independently, at least during the early stage of the wave-field evolution.
Therefore, the energy exchange processes with the primary wave may be addressed
by considering one triad only. We shall choose triad T1. We adopt from now on
the convention that frequencies are positive. The temporal resonance condition is
thus expressed as ω1 + ω2 = ω0 and the associated spatial resonance condition as
k1 + k2 = k0. In the following, k0 = (1, 1), k1 = (3, 7) and k2 = (−2, −6) (so that
ω1 = Ncos(θ1) and ω2 = −Ncos(θ2)).

Let A′ be the amplitude of the secondary resonant waves in this triad. As long as
their steepness is much smaller than 1, insight into the kinematics of the instability
can be gained by simply superimposing these two waves. The resulting streamfunction
is, using the polarization relations, (4):

A′[sin(k1 · x − ω1t) + sin(k2 · x − ω2t + φ′)], (11)

while the resulting density field is:

A′Nκ1[sin(k1 · x − ω1t) − sin(k2 · x − ω2t + φ′)], (12)

where φ′ is the phase difference between the two waves. A good approximation
for these fields can be obtained by assuming that the resonant waves are of small
scale relative to the primary wave, implying that (i) κ0 � κ1, κ2; k1 � −k2 so that
k1 − k2 � 2k1 but k1 + k2 = k0; (ii) temporal resonance is nearly satisfied: ω1 � ω2 �
ω0/2, with δω = ω1 − ω2 � ω1, ω2. δω is the frequency mismatch between the two
resonant waves. With these assumptions, the approximate expressions for the resulting
streamfunction (11) and density fields (12), which we denote as ψ̃ and σ̃ , are:

ψ̃(x, z, t) = 2A′ sin
(

1
2
k0 · x − 1

2
ω0t + 1

2
φ′) cos

(
k1 · x − 1

2
δω t − 1

2
φ′), (13)

σ̃ (x, z, t) = 2A′Nκ1 cos
(

1
2
k0 · x − 1

2
ω0t + 1

2
φ′) sin

(
k1 · x − 1

2
δω t − 1

2
φ′). (14)

The interpretation of (13) and (14) is straightforward: each scalar field represents
a wave with wavevector k1 propagating with the phase velocity δω/(2κ1), whose
amplitude is modulated by a sinusoidal envelope of wavelength 4π/κ0 that propagates
at the phase speed of the primary wave. Since the side of the numerical domain is 2π
only, the modulation will consist of half a sinusoidal envelope, of width 2π/κ0.
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Figure 6. (a) Contours of the vorticity field, (15), for the resonant secondary waves of triad
T1, using the triad model (negative values are represented by dotted lines). Negative values
of the primary wave vorticity field, (16), manifested as dark tilted bands, are superimposed.
(b, c) Contours of the perturbation vorticity field computed from the DNS run 2 at two
instants separated by one primary wave period (PWP). Regions of negative and positive sign
of the primary wave vorticity ζ0 are superposed (dark regions: ζ0 < 0, light regions: ζ0 > 0).
(d) Perturbation vorticity field for a run identical to run 2 except that the viscosity is smaller
by two orders of magnitude (the primary wave vorticity is not shown here).

The width of the envelope is much greater than the typical wavelength (2π/κ1) of
the oscillations modulated by the envelope. Consequently, any spatial derivative of
ψ̃ (or σ̃ ) is approximated well by differentiating with respect to the latter oscillations
only. In this approximation, the vorticity of the resonant waves ζ̃ = ∇2ψ̃ is expressed
by

ζ̃ (x, z, t) = −2κ2
1A

′ sin
(

1
2
k0 · x − 1

2
ω0t + 1

2
φ′) cos

(
k1 · x − 1

2
δω t − 1

2
φ′). (15)

This field is visualized for triad T1 at a given time in figure 6(a). The spatial structure
of ζ̃ within the envelope consists of alternating crests and troughs whose normal
directed along k1 makes an angle θ1 with the horizontal such that cos θ1 � (cos θ0)/2.
The latter feature simply reflects the parametric resonance excitation of the secondary
waves.
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Expressions (13) and (14) also show that the phase within the envelope propagates
at a much smaller speed than the envelope does. Indeed, the two relevant speeds are
in the ratio [ω0/κ0]/[δω/(2κ1)] � 100 for triad T1. The oscillation within the envelope
can thus be considered as stationary with respect to the fluid domain. The phase lines
would be exactly stationary, were the temporal resonance condition exactly satisfied.
This peculiar property is related to the quasi-opposite propagation of the resonant
waves (i.e. k1 � −k2). Neglecting the phase propagation within the envelope, any
scalar field of the resonant waves (ψ̃ , σ̃ or ζ̃ ) therefore has a temporal period of two
primary wave periods. We shall see that this structure of the resonant waves is the
key to optimizing the energy exchange with the primary wave.

5.3. Spatial structure of the instability in the numerical simulations

Contours of the perturbation vorticity field are displayed in figures 6(b) and 6(c)
for run 2 at two instants separated by one period of the primary wave. Regions of
positive and negative sign of the primary wave vorticity field ζ0 are superimposed in
order to investigate the phase relationship between the two fields.

Despite the fact that several resonant (and non-resonant) triads grow simul-
taneously, the structure of the perturbation vorticity field matches the predictions
by the simple triad model: the field displays a modulation of width 2π/κ0, the
vorticity changes sign between figures 6(b) and 6(c) at any given point and the phase
oscillations within the envelope are manifested as alternating crests and troughs
whose normal makes an angle close to cos−1(0.5 cosθ0) with the horizontal. The
adequacy of the triad model to predict this pattern confirms the dominant role of a
few independent resonant triads in the primary wave instability. The length scale of
the vorticity bands within the envelope, δ say, is set by the typical wavelength of the
resonant waves, δ � π/κ1. This is confirmed in figure 6(d), which displays the vorticity
field of the perturbation for a computation identical to run 2 except that it uses a
viscosity smaller by two orders of magnitude; wave vectors with a larger modulus
are selected by the smaller viscosity which sets thinner vorticity bands. This thickness
is therefore controlled by the wave vector of the primary wave, by molecular effects
and, for large enough viscosity, by the grid resolution. The growth of the perturbation
is attested by the fact that the perturbation vorticity increases by a factor 2 (from
1.1 × 10−5 to 2.2 × 10−5) between figures 6(b) and 6(c).

Compared to figure 6(a), figure 6(b) still displays an important difference, when
the perturbation vorticity field alone is considered. This difference is best put forward
by a clockwise rotation of the (x, z)-coordinate system through π/2 − θ1. In the
resulting (x ′, z′)-coordinate system the perturbation vorticity field may be viewed as a
horizontally periodic wave packet confined along the vertical z′-direction. Figure 6(b)
shows that the tail of the vorticity bands is tilted toward the z′-axis and thickens
while tilting. Such effects are also observed by Sutherland (2001) in studying finite-
amplitude horizontally periodic, vertically compact wave packets (see figure 4 of his
paper). According to Sutherland, nonlinear effects resulting from the interaction of
the wave field with its induced mean flow may trigger a process of self-acceleration,
which accounts for the observed modifications in the wave packet structure. In the
present case, the secondary wave amplitude is too small to yield any significant
induced mean flow, but the large-scale flow associated with the primary wave may
act as such a mean flow. Hence, the observed effects could be a manifestation of the
finite amplitude of the primary wave.

A striking feature of figure 6(b) is that the perturbation vorticity ζ̃ reaches extremal
values when the primary wave vorticity ζ0 < 0 is negative. This feature is inherent to
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the parametric forcing mechanism as will be seen in the next section. The envelope of
ζ̃ and the ζ0 < 0 zone should then remain in phase during the instability growth since
(using the triad model) they propagate at the same speed. The phase of the primary
wave relative to the envelope of ζ̃ can easily be inferred from this model. Writing
that the envelope sin(k0 · x/2 − ω0t/2 + φ′/2) (see relation (15)) reaches an extremal
value when ζ0 = −Aκ2

0 sin(k0 · x − ω0t + φ) is minimum yields φ = φ′ − π/2 mod. 2π.
This means that the forcing of the resonant waves results from an adjustment of the
phase within the triad such that

ζ0(x, z, t) = Aκ2
0 cos(k0 · x − ω0t + φ′), (16)

when (15) is used for ζ̃ . With the present definition of ψ0 (see (4)), φ = 0 so that
φ′ = π/2, but we shall keep the phase difference φ′ in the remainder of the paper for
more generality. Contours of negative values of ζ0 given by (16) are superimposed
upon contours of ζ̃ in figure 6(a). The former contours lie in the region of extremal
values of the envelope, by construction, and closely model the spatial structure
displayed in figure 6(b).

6. Energetics of the instability
In this section, we analyse the energy exchange process between the primary wave

and the parametrically forced resonant waves. Analytical expressions for the energy
exchange terms are derived from the kinematic model, which are compared for triad
T1 to the DNS results, for runs 0, 2 and 3.

6.1. Linearized equations for the perturbation energy

The instability mechanism through which the perturbation grows is best analysed
using energy budgets in the classical rotated frame of reference (e.g. Mied 1976):
X = x sin θ0−z cos θ0, Z = x cos θ0+z sin θ0. This frame of reference provides a simpler
expression for the velocity field (U0, W0) and for the density field Σ0 of the primary
wave: [U0, W0, Σ0] = [Aκ0 sin Φ0, 0, −ANκ0cos Φ0], with Φ0 = k0x +m0z−ω0t +φ′ =
κ0Z − ω0t + φ′.

We perform a decomposition of the flow fields into primary wave components and
perturbation components following

U = U0 + U ′ ρ ′ = Σ0 + σ ′ p = P0 + P ′, (17)

where U refers to the total velocity field in the rotated reference frame. Linearization
of the Boussinesq equations in this rotated reference frame yields the following
equations for the energy of the perturbation, ignoring molecular effects (e.g. Lombard
& Riley 1996a; Sonmor & Klaassen 1997):(

D

Dt

)
0

1
2
(U ′2 + W ′2) = −∇(U ′ · P ′) − σ ′(−U ′ cos θ0 + W ′ sin θ0) − U ′W ′ζ0, (18)

(
D

Dt

)
0

1

2

σ ′2

N2
= σ ′(−U ′ cos θ0 + W ′ sin θ0) − 1

N2
σ ′W ′ dΣ0

dZ
. (19)

The expression (D/Dt)0 = ∂/∂t + U0∂/∂X is the material derivative following the
primary wave and ∇ now denotes the gradient with respect to the rotated coordinate
system.

The right-hand side of equation (18) shows that the rate of change of the perturba-
tion kinetic energy per unit mass KE′ =(U ′2 + W ′2)/2 is contributed to by three
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terms, (i) the net rate of working by pressure forces on the unit mass, (ii) minus
the perturbation buoyancy flux, denoted as −BF′ in what follows, and (iii) the
kinetic energy transfer rate between the primary wave and the perturbation. BF′

has the well-known expression σ ′w′, since w′ becomes (−U ′ cos θ0 + W ′ sin θ0) under
the coordinate system transformation. Term (iii) involves the shear of the primary
wave, since ζ0 = dU0/dZ, and will be referred to as the perturbation kinetic energy
production term, or KEP for short. Similarly, equation (19) shows that the rate of
change of the perturbation potential energy per unit mass PE′ = 1/2(σ ′2/N2) is driven
by the buoyancy flux BF′ and by a perturbation potential energy production term;
the latter term is denoted by PEP and involves the vertical density gradient of the
primary wave dΣ0/dZ (Lombard & Riley 1996a). Note that both energy exchange
terms KEP and PEP can be of either sign.

6.2. Predictions of the kinematic triad model

To obtain an insight into the parametric forcing process, it is useful to obtain explicit
expressions of these energy exchange terms. Approximate expressions may be obtained
from the kinematic triad model introduced in the previous section. In the following,
any quantity derived from the model (therefore involving the two secondary waves
resonantly interacting with the primary wave) will be denoted with a tilde.

The velocity field of the resonant waves can be computed from (13) for the
resulting streamfunction ψ̃ . As for the computation of the resulting vorticity, (15),
spatial differentiation is performed with respect to spatial oscillations within the
envelope, the change in the slowly varying envelope being neglected. This operation
yields (in the rotated reference frame)

Ũ = −2A′κ1 cos(θ1 − θ0) sin
(

1
2
Φ0

)
sin Φ1, W̃ = −2A′κ1 sin(θ1 − θ0) sin

(
1
2
Φ0

)
sin Φ1,

(20)

where Φ1 = k1 · x − (δω/2)t − φ′/2. Il follows that

ŨW̃

(A′κ1)2
= 2 sin[2(θ1 − θ0)] sin2

(
1
2
Φ0

)
sin2 Φ1. (21)

(A′κ1)
2 is the total energy of the resonant waves. The expression for the energy

exchange terms K̃EP = −ŨW̃ ζ0 and P̃EP = −(1/N 2)σ̃ W̃ (dΣ0/dZ) are readily
obtained:

K̃EP

(A′κ1)2
= −2A0κ

2
0 sin[2(θ1 − θ0)]sin

2
(

1
2
Φ0

)
cosΦ0sin

2Φ1, (22)

P̃EP

(A′κ1)2
= 2A0κ

2
0 sin(θ1 − θ0)sin

2Φ0sin
2Φ1. (23)

Since 0 � 2(θ1 − θ0) � π/2, sin[2(θ1 − θ0)] � 0. Therefore, (i) ŨW̃ � 0, (ii) the sign of

K̃EP is that of −cosΦ0, that is of −ζ0, and (iii) P̃EP � 0. The expression of all the
terms related to the energetics of the resonant waves are given in table 2.

The mechanisms of amplification through parametric instability are studied below,
but we think it useful to summarize the main ideas now. For simplicity, let us consider
the energy exchange processes at one location in the fluid domain. The above remarks

about the sign of K̃EP imply that resonant waves extract kinetic energy from the
primary wave when ζ0 is negative at that location. This occurs during half a primary
wave period. During the other half period, ζ0 becomes positive at that location so that
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Definition of Q Prediction of Q by the triad model

ζ0 A0κ
2
0 cosΦ0

dΣ0

dZ
A0κ

2
0N sinΦ0

Ũ −2A′κ1 cos(θ1 − θ0) sin( 1
2
Φ0) sin Φ1

W̃ −2A′κ1 sin(θ1 − θ0) sin( 1
2
Φ0) sin Φ1

σ̃ 2A′Nκ1 cos( 1
2
Φ0) sin Φ1

K̃E = 1
2
(Ũ 2 + W̃ 2) 2 sin 2( 1

2
Φ0) sin 2Φ1

P̃E = 1
2

σ̃ 2

N 2
2 cos 2( 1

2
Φ0) sin2 Φ1

B̃F = σ̃ w̃ ω0 sinΦ0 sin2 Φ1

K̃EP = −ŨW̃ ζ0 −2A0κ
2
0 sin[2(θ1 − θ0)] sin2( 1

2
Φ0) cos Φ0 sin2 Φ1

P̃EP =
−σ̃ W̃

N 2

dΣ0

dZ
2A0κ

2
0 sin(θ1 − θ0) sin2 Φ0 sin2 Φ1

Table 2. Kinematic triad model. Predictions are expressed as a function of A0 and A′ (primary
and resonant wave streamfunction amplitude), θ0 and θ1 (angle with the horizontal of the
primary wave and resonant waves, respectively), N (Brunt–Väisälä frequency), κ0 and κ1

(primary and resonant wave vector modulus), and of the phases of the primary and resonant
waves Φ0 and Φ1, respectively. The predictions of the last five quantities are normalized by
(κ1A

′)2 (total energy of the resonant waves).

K̃EP changes sign and becomes positive. The point is that the loss of kinetic energy
from the resonant waves will be minimized during this half-period if the latter energy
is (reversibly) stored into potential energy; indeed, the value of ŨW̃ will be minimum
during this half-period (but not exactly zero as we shall see). Regarding the resonant

wave potential energy, the positive sign of P̃EP implies that these waves extract
potential energy from the primary wave whether the local stability is increased by
the primary wave (dΣ0/dZ < 0) or decreased (dΣ0/dZ > 0). These remarks imply that
an optimum scenario for energy exchange between the primary and resonant waves
occurs when the energy of the resonant waves oscillates with the same frequency as
the vorticity of the primary wave anywhere in the fluid domain. Or the resonant wave
energy is phase-locked with the primary wave vorticity, meaning that the resonant
wave frequency should be ω0/2 and its wavelength 2(2π/κ0). These remarks explain
in particular why the extremal values of the vorticity perturbation coincide in figure
6 with the region where ζ0 < 0: this is the location where the perturbation kinetic
energy is forced.

These energy transfer mechanisms are illustrated in figure 7. Quantities related to
the energetics of the resonant waves are plotted as a function of time, at a given
position in the fluid domain. Note that all these quantities are normalized by the
total energy of the resonant waves (κ1A

′)2 but, for simplicity, we shall keep the same
notation to refer to the normalized quantities.

For the resonant triad T1, the frequency mismatch δω = ω1 − ω2 is not small with
respect to ω0 so that the temporal evolution of the envelope is strongly modulated. For
a clear illustration of the exchange process, we ignore this frequency mismatch in the
following. From a physical point of view, this amounts to considering a low-viscosity
fluid, for which resonant waves of high wavenumber (thus having δω � 1) would be
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Figure 7. Prediction by the kinematic triad model, for resonant waves with large enough
wavenumbers so that |ω1 −ω2| � ω0. Results are shown for a primary wave amplitude equal to
A0 = 0.256. All quantities, normalized by the total energy of the resonant waves, are plotted
over three Brunt–Väisälä periods at a fixed location in the fluid domain (x = π/4, z = π/4).
(a) K̃E (full line), K̃EP (dashed line) and ζ0 (dotted line); (b) K̃E (full line), P̃E (dashed line),
B̃F (dash-dotted line) and ζ0 (dotted line); the abscissa is also expressed in term of the primary
wave phase Φ0; (c) P̃E (dashed line), P̃EP (dash-dotted line), P̃EP + B̃F (full line) and ζ0

(dotted line). The RSS (reduced static stability) and ISS (increased static stability) regions are
indicated. ζ0 is the primary wave vorticity and all other quantities have been defined in § § 6.1
and 6.2.

selected. This choice also reflects the fact that the energy transfer mechanisms are
controlled by the primary wave.

The quantities K̃E, K̃EP and ζ0 are displayed in figure 7(a). The transfer of kinetic

energy from the primary wave K̃EP is maximum when ζ0 is minimum, as expected

from the expression of K̃EP and from the discussion above. When ζ0 passes through

zero and becomes positive, the forcing term K̃EP becomes slightly negative, which
means that the resonant waves still return to the primary wave a small part of the

acquired kinetic energy. However, K̃EP vanishes when ζ0 is maximum, implying that
all of the resonant wave energy is under potential form at that time. The latter point

is confirmed in figure 7(b), where K̃E, P̃E, B̃F and ζ0 are displayed as a function of
time at the same fixed location relative to the fluid domain.

It follows that the buoyancy flux B̃F should change sign during the half period

where ζ0 has a constant sign. Hence, B̃F should be out-of-phase by π/2 with ζ0.
Figure 7(b) shows that this is the case.

Quantities related to resonant wave potential energy, namely P̃E, P̃EP and P̃EP +

B̃F are plotted along with ζ0 in figure 7(c) as a function of time. The forcing term
PEP remains positive at all times and is maximum where ζ0 vanishes, which occurs at

locations in an RSS or ISS region. At these locations K̃E= P̃E, that is, P̃E is only half
its maximum value. This accounts for the asymmetry of the forcing of the resonant

wave energy by the primary wave: during a primary wave period, K̃E is forced once

by the primary wave (at Φ0 = π mod. 2π, when K̃E is maximum) while P̃E is forced

twice (at Φ0 − π/2 and Φ0 + π/2, when K̃E = P̃E). B̃F is positive when averaged over

an RSS region, because K̃E is transferred into P̃E during the same time, and negative

over a ISS region because P̃E is transferred into K̃E (ζ0 changing sign to become

negative). The ratio of P̃EP to B̃F when each quantity is averaged over a RSS region
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Figure 8. Sketch of the parametric forcing mechanism over one primary wave period, using
an analogy with a parametrically forced pendulum. The motion of the pendulum is analogous
to that of the resonant wave field at a fixed location in the fluid domain. Position 1 is
the equilibrium position of the pendulum, where the kinetic energy K̃E is maximum. In the
internal wave problem, forcing of K̃E occurs through the primary wave shear, and is identical
to increasing the length l of the pendulum. At positions 2 and 4, a second forcing mechanism,
now for the resonant wave potential energy P̃E, occurs through the primary wave density
gradient. Position 2 corresponds to an RSS region; in the pendulum analogy, its support rises
(and the rising motion benefits from an apparent lower gravity); K̃E is moreover transferred
into P̃E at that location so that the net rate of change of P̃E is positive. Position 4 corresponds
to an ISS region; in the pendulum analogy, its supports goes down (so that the apparent

gravity increases); P̃E is, however, transferred into K̃E at that location and, for the range of
primary wave amplitudes we consider, the net rate of change of P̃E is always negative. Position

3 coincides with the maximum angular displacement of the pendulum and P̃E is therefore
maximum at that position; the length of the pendulum is minimum there. ζ0 is the vorticity of
the primary wave and Φ0 denotes its phase.

is equal to

〈P̃EP〉RSS

〈B̃F〉RSS

=
π

4

sin(θ1 − θ0)

cos θ1

A0κ
2
0

N
(24)

=
π

4

sin(θ1 − θ0)

sin θ0 cos θ1

s0 (25)

� 1.29s0, (26)

this quantity having an opposite sign for an ISS region. Thus, in RSS and ISS
regions, the buoyancy flux dominates the potential (and kinetic as well) energy
production terms as long as s0 < 0.77, which is the case for all runs considered here
(assuming the kinematic triad model remains reliable for such large values of s0). It

follows that the net rate of change of P̃E is positive in RSS regions only, being always
negative in ISS regions. We shall see that, as the perturbation amplitude increases, the
breakdown of the internal wave field is initiated in RSS regions through a secondary
instability. The source of energy is therefore the potential energy of the primary wave,
so that this instability must be a buoyancy-induced instability.

The chronology of these energy transfers is sketched in figure 8, using an analogy
with a parametrically forced pendulum. The parametric instability is amplified because
of two forcing mechanisms, namely the oscillation of the vertical density gradient of
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the primary wave and of its vertical shear. In the pendulum analogy, the former
mechanism is analogous to the vertical oscillation of the support of the pendulum
and the latter, to the oscillation of the length of the pendulum. Each of these two
forcing mechanisms implies a periodic modulation of the local frequency experienced
by the perturbation, a process resulting in its parametric amplification. This analogy
usefully complements that proposed by Bouruet-Aubertot et al. (1995).

6.3. Results from the numerical simulations

A global and frame independent view of the forcing mechanism as observed in the
DNS can be gained by averaging KE′, PE′ and BF′, the quadratic terms for the
perturbation, and KEP and PEP, the energy exchange terms between the primary
wave and the perturbation, over the regions of the numerical domain where the
primary wave vorticity ζ0 is either positive or negative. The former region will be
referred to as a P region and the average is denoted as 〈·〉P ; the latter region will be
referred to as a N region and the average is denoted as 〈·〉N . All averaged quantities
are also normalized by the total energy of the perturbation. As previously, the same
notation will be used to refer to a normalized and a non-normalized quantity.

For comparison purposes with the DNS results, the quadratic and energy produc-
tion terms predicted by the triad model for triad T1 have also been averaged over
the P and N regions and normalized by the total energy of the resonant waves. An
average over a P region simply amounts to integrating with respect to Φ0, for
Φ0 ∈ [−π/2, π/2]. For an N region, Φ0 varies between π/2 and 3π/2. It is assumed
that Φ1 varies much faster than Φ0 so that the sin2 Φ1 factor in these terms only
contributes a factor of 1/2 to the average.

6.3.1. Results for run 0

The steepness of the primary wave is small for run 0 (see table 1) and this case
thus illustrates the weakly nonlinear regime. The temporal evolution of the quadratic
and energy exchange terms computed from DNS for run 0 are displayed in figure 9.
The DNS values obtained at t =40TBV are compared in table 3 with the predictions
of these terms by the triad model for triad T1.

Since the primary wave is perturbed by a white noise, time is required for the
resonant triads to emerge from that noise (and control the perturbation growth). As
a consequence, an erratic behaviour occurs at early times, whose duration depends
upon the primary wave amplitude.

The ratio of the domain-averaged perturbation kinetic energy 〈KE′〉 to potential
energy 〈PE′〉 is plotted in figure 9(a) versus time (each quantity is displayed in
figure 1(b) and has already been commented on in § 3). A unit value is predicted for
this ratio by the triad model (see table 3) consistently with the model consisting of
a superposition of linear internal gravity waves. Figure 9(a) however, shows that, in
the DNS run 0, this ratio departs slightly from unity, 〈KE′〉 being smaller than 〈PE′〉
by less than 1 %.

The averaged values of KE′ and PE′ over the N and P regions
are displayed in figure 9(b). Since kinetic (potential) energy in an
N (P) region is converted into potential (kinetic) energy when this region becomes
a P (N) region, we would expect 〈KE′〉N = 〈PE′〉P (〈KE′〉P = 〈PE′〉N ) if exact
equipartitioning between perturbation kinetic and potential energy were to occur.
These equalities are indeed predicted by the triad model (see table 3). When the DNS
results for this run are examined, figure 9(b) and table 3 show that 〈KE′〉P = 〈PE′〉N

also and the value matches that predicted by the triad model by 1 %. Figure 9(b),
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Figure 9. Energetics of destabilization for DNS run 0. KE′, PE′, BF′, KEP and PEP have
been defined in § 6.1. These quantities are averaged either over the whole numerical domain
(〈 〉) or over region where the primary wave vorticity is either negative (〈 〉N ) or positive (〈 〉P ).
Comparison with the theoretical predictions by the triad model are displayed using a dotted
line in (a) for 〈KEP〉/〈PEP〉, in (c) for 〈KEP〉 and 〈PEP〉 (the theoretical values overestimating
the numerical ones) and in (e) for 〈KEP〉N/〈KEP〉P . All quantities are normalized by the
instantaneous value of 〈KE′〉 + 〈PE′〉.
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Q̃, Q′ 1

2π

∫ π/2

−π/2
Q̃ dΦ0

1

2π

∫ π/2

−π/2
Q̃ dΦ0 DNS value

1

2π

∫ 3π/2

π/2
Q̃ dΦ0

1

2π

∫ 3π/2

π/2
Q̃ dΦ0 DNS value

for triad T1 〈Q′〉P for triad T1 〈Q′〉N

K̃E, KE′ 1

4
− 1

2π

1

4
− 1

2π
0.092

1

4
+

1

2π

1

4
+

1

2π
0.405

P̃E, PE′ 1

4
+

1

2π

1

4
+

1

2π
0. 409

1

4
− 1

2π

1

4
− 1

2π
0.092

B̃F, BF′ 0 0 −4.1 10−3 0 0 2.9 × 10−3

K̃EP, KEP

(
1

8
− 1

2π

)
Aκ2

0 −0.0035 −0.0035

(
1

8
+

1

2π

)
Aκ2

0 0.029 0.026

× sin[2(θ1 − θ0)] × sin[2(θ1 − θ0)]

P̃EP, PEP 1
4 Aκ2

0 sin(θ1 − θ0) 0.014 0.013 1
4 Aκ2

0 sin(θ1 − θ0) 0.014 0.013

Table 3. Quadratic and energy exchange terms for run 0. Comparison between (i) the
predictions of these terms by the triad model (tilde terms) for triad T1 and (ii) their DNS
values at t = 40 TBV (primed terms, KEP, PEP). All terms are normalized by the energy of
the perturbation and are averaged over a region where the primary wave vorticity is either
positive (columns 2, 3 and 4) or negative (columns 5, 6 and 7). Analytical predictions by the
triad model are indicated in columns 2 and 5. The values of these predictions for triad T1 are
indicated in columns 3 and 6. The DNS values are indicated in columns 4 and 7.

however, shows that 〈KE′〉N is slightly smaller than 〈PE′〉P , which accounts for the
finding in figure 9(a). The value for 〈PE′〉P is predicted well by the triad model
implying that the unexpected discrepancy between 〈KE′〉 and 〈PE′〉 lies in 〈KE′〉N .

The ratio of 〈KEP〉 to 〈PEP〉 is displayed in figure 9(a). As opposed to the
perturbation energy ratio, 〈KEP〉/〈PEP〉 is clearly different from 1. This means that
the transfer of potential energy from the primary wave to the perturbation is larger
than the transfer of kinetic energy from that wave. This behaviour is intrinsic to
internal gravity wave dynamics; indeed, the triad model predicts that

〈K̃EP〉
〈P̃EP〉

= cos(θ1 − θ0), (27)

(see table 3), that is, it depends only upon the angle that the primary wave vector
makes with the horizontal (since cos θ1 = 0.5 cos θ0). This expression, theoretically
valid in the limit of infinitely small primary wave amplitude, approximates quite well
the value found in the DNS, the relative difference being only 5 %.

The domain-averaged energy production terms 〈KEP〉 and 〈PEP〉 are plotted in
figure 9(c), along with their predictions by the triad model. These predictions match
quite closely the DNS findings, the prediction for 〈PEP〉 being better than for 〈KEP〉
(the relative errors are ∼ 2 % and ∼ 5 %, respectively). The averaged value of KEP and
PEP over the N and P regions is displayed in figure 9(d), the ratios 〈KEP〉N/〈KEP〉P

and 〈PEP〉N/〈PEP〉P being displayed in figure 9(e). As indicated in table 3, the triad
model also provides a good approximation of these four averaged quantities (apart
from a small overestimation of 〈KEP〉N ) so that their ratios are also predicted well.
These results can be interpreted with the triad model: since perturbation potential
energy is forced twice per primary wave period (in RSS and ISS regions), one expects
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〈PEP〉P = 〈PEP〉N , which is indeed found. By contrast, since perturbation kinetic
energy is forced once, in an N region, one expects 〈KEP〉N to be much larger than
〈KEP〉P . The relative magnitude of the two latter terms is provided by the triad model
and is equal to |(2π + 8)/(2π − 8)| � 8.32.

Since 〈PEP〉 is larger than 〈KEP〉, but 〈KE′〉 � 〈PE′〉, a net transfer of perturbation
potential energy into perturbation kinetic energy should occur over a primary wave
period. Hence, the perturbation buoyancy flux 〈BF′〉 should be negative to maintain
the equipartition between 〈KE′〉 and 〈PE′〉. This equipartition is indeed a vital
condition to sustain the efficiency of energy transfers from the primary wave (that is,
to sustain the instability itself). Since 〈PE′〉 is transferred into 〈KE′〉 in an N region
and 〈KE′〉 into 〈PE′〉 in a P region, 〈BF′〉N (which is negative) should have a larger
absolute value than 〈BF′〉P . Figure 9(f ) confirms this interpretation.

In this discussion, some discrepancies have been noted between the predictions
by the triad model and DNS findings. Thus, the ratio 〈KEP〉N/〈KEP〉P is lower by
10 % than the theoretical prediction, owing to the discrepancy between the prediction
of 〈KEP〉N by the triad model and its DNS value. Assuming that the triad model
prediction is correct, this discrepancy indicates that the kinetic energy forcing in
the DNS is not as efficient as it could be. This may already be a manifestation
of the finite amplitude of the primary wave and would account for 〈KE′〉N being
smaller than 〈PE′〉P in figure 9(b). Finally, we should stress that the triad model has
limitations. Thus, the negativity of the buoyancy flux is not predicted by the model.
This is because σ ′ is derived for each resonant wave of the triad from the polarization
relation for an unforced wave. The error in the prediction of the numerical value of
〈BF′〉 is actually within the range of the other relative errors of the model predictions,
but it exposes the limitation of a kinematic model.

6.3.2. Results for runs 2 and 3

The primary wave amplitude has been increased by a factor 4 in run 2 (figure 10) and
by a factor 16 in run 3 (not shown). We recover the striking feature just described for
run 0: potential energy transfer from the primary wave (〈PEP〉) is greater than kinetic
energy transfer from that wave (〈KEP〉), but perturbation kinetic and potential energy
remain roughly equipartitioned (to sustain the instability) so that the net buoyancy
flux is negative.

Figure 10 also shows that all quantities related to potential energy are predicted well
by the kinematic model. Since this model is strictly valid for infinitely small primary
wave amplitude, we attribute all differences with its predictions to the increase in
amplitude of the primary wave, as for run 0. The main effect, already guessed in
run 0, is that the efficiency of the kinetic energy transfer from the primary wave,
which occurs in an N region, decreases as A0 increases. Figure 6 provides a possible
mechanism to account for this behaviour: the phase lines of the perturbation in an
N region lie partly outside this region, probably because of primary wave advection.
Hence, the phase between the perturbation and the primary wave is modified in an
N region, which decreases the efficiency of the kinetic energy transfer process. This
phase modification may account for all quantities in figure 10 oscillating at the
primary wave period.

This advection process in an N region is probably responsible for 〈PEP〉 now being
underpredicted by the triad model. In other words, the efficiency in potential energy
extraction from the primary wave increases with the primary wave amplitude. Figure 6
may again be invoked to account for this behaviour; we already observed that the tail
of the vorticity layers associated with the perturbation field is nearly horizontal (an
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Figure 10. Energetics of destabilization for DNS run 2. A similar analysis to figure 9 is
displayed. Comparison with the triad model predictions are displayed in (a)–(d) using a dotted
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effect which we attributed to the finite amplitude of the primary wave field). These
quasi-horizontal tails are in an RSS region, where isopycnal lines make the sharpest
angle to the horizontal. We may consider the extreme case of a large-amplitude
primary wave having almost vertical isopycnal lines. In RSS regions, the direction
of particle motions tends to be quasi-orthogonal to the isopycnals, resulting in a
penetration of light fluid under dense fluid, which increases the potential energy of
the perturbation.

A further increase in the primary wave amplitude simply exacerbates these features
(run 3, not shown). The approximate equipartition between 〈KE′〉 and 〈PE′〉 still
holds, but now, both 〈PEP〉 and 〈KEP〉 strongly depart from the model prediction,
the former rate being 50 % larger than the model prediction while the latter is twice
too low. The buoyancy flux is now negative in both N and P regions to make up for
the strong imbalance between kinetic and potential energy transfers from the primary
wave.

In summary, runs 2 and 3 show that the basic mechanism of the parametric
instability process is preserved when the wave amplitude increases, it being modified,
but not destroyed, by the finite amplitude of the primary wave.

7. Breakdown of the wave field
In this section, we infer from simple considerations that the total wave field becomes

locally unstable through a buoyancy-induced instability, as a result of the amplification
of the perturbation by parametric instability. A Kelvin–Helmholtz instability may
also develop, but we show from the triad model that, when amplification occurs,
the growth rate of the buoyancy-induced instability is always larger than that of the
Kelvin–Helmholtz instability.

7.1. On the occurrence of a buoyancy-induced instability

It was shown in § 6.2 that the net rate of change of perturbation potential energy is
positive in RSS regions; consequently, if overturning is to occur in the fluid, it should
occur in such regions. On the other hand, the maximum vorticity of the perturbation
increases in ζ0 < 0 regions so that a Kelvin–Helmholtz instability may occur there.

The total density field is displayed at successive times in figure 11 for run 2.
Figure 11(a) reveals that the density contours start deforming in RSS regions, as a
result of the perturbation amplification. Figure 11(b) shows that, one primary wave
period later, no Kelvin–Helmholtz instability is visible yet and that the regions of
maximum kinetic energy of the perturbation (N region) still display unperturbed
density lines. By contrast, statically unstable layers are forming in the RSS regions.
Hence, the breaking of the total wave field should occur through a buoyancy-induced
instability arising in RSS regions, as a result of the parametric amplification of the
perturbation by the primary wave. Thus, the mechanisms underlying the development
of the buoyancy-induced instability do not depend upon the primary wave amplitude.

7.2. Kelvin–Helmholtz versus buoyancy-induced instability

The internal wave breakdown event is initiated by the set of statically unstable layers,
as shown in the preceeding paragraph. In our two-dimensional simulations, the
subsequent development of wave breakdown actually results from Kelvin–Helmholtz
instability (see figure 11c). The reason for this behaviour is the following. As shown
by Thorpe (1994) and Batchelor & Nitsche (1991), a linear background stratification
and a vertical shear tend to stabilize unstable layers. No shear exists in the direction
transverse to the primary plane wave and laboratory experiments, both of breaking
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Figure 11. DNS results for run 2. Total density field at (a) t = 20.5 PWP, (b) t = 21.4 PWP in
units of the primary wave period (PWP). The three black lines mark the approximate locations
where ζ0 is minimum (lower and upper lines) and maximum (middle line), so that the RSS
regions can be inferred (see figure 5). (c) Total vorticity field for run 2 at 25.9 PWP (that is,
36.6 BVP).

gravity waves (Benielli & Sommeria 1998) and of a stably-stratified shear layer
(Schowalter, Van Atta & Lasheras 1994) have shown that the buoyancy-induced
instability does develop in this transverse direction. It is therefore an intrinsically
three-dimensional instability. Consequently, the buoyancy-induced instability cannot
develop in a two-dimensional plane simulation and the Kelvin–Helmholtz instability
is promoted.

Let us show that a Kelvin–Helmholtz instability is not expected to occur in a
three-dimensional fluid. For this purpose, we first estimate the growth rate of this
instability. We introduce the local Richardson number Ri(x, t), defined as

Ri(x, t) =
N 2 − ∂ρ ′/∂z

(∂u/∂z)2
(28)
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Figure 12. Growth rate of the buoyancy-induced instability λb defined by (30) for three values
of the primary wave amplitude A0 (full line) and of the dynamical (Kelvin–Helmholtz) instability
λd defined by (29) for α = 0.15 (dashed line), as a function of the maximum vorticity of the
perturbation ζ ′

max. The linear frequency of the parametrically forced perturbation ω0/2 is indicated
with a horizontal full line.

where the numerator is the total vertical density gradient. A necessary condition for
Kelvin–Helmholtz instability is that Ri < 0.25 somewhere (e.g. Drazin & Reid 1981),
but this applies rigorously only to a plane parallel steady horizontal shear layer.
It may be applied in the present case if the growth rate of the Kelvin–Helmholtz
instability, λd say, is larger than the frequency of the vorticity layers (meaning that
the instability has time to develop before the vorticity of the layers changes sign):
λd > ω0/2. The growth rate of the Kelvin–Helmholtz instability is of the form

λd = α(Ri)ζ ′
max, (29)

where α(Ri) varies continuously from a value of � 0.2 for Ri � 1 down to 0 if the
Richardson number exceeds 1/4 everywhere (Hazel 1972); ζ ′

max =2A′κ2
1 denotes the

maximum vorticity over the computational domain of the perturbation field. The
Kelvin–Helmholtz instability may therefore develop if ζ ′

max is larger than ω0/(2α).
Though this instability develops when the perturbation field has grown to

appreciable amplitude, let us estimate α from the triad model by computing the
local Richardson number in the region where the instability is expected to grow.
This is where ζ0 reaches its minimum value, that is for Φ0 = π mod. 2π. In this
region, the minimum value of Ri is N 2/(ζ0,max + ζ ′

max)
2. At the time the instability

develops, ζ ′
max is larger than 5 for run 2 (while ζ0,max = 0.256) so that the minimum

value of Ri is �N2/(ζ ′
max)

2, which is much smaller than 1. Hence, α � 0.2. The
condition ζ ′

max >ω0/(2α) therefore yields ζ ′
max > 1.8, which is satisfied. Hence, a Kelvin–

Helmholtz instability might develop.
We now compare the growth rate of this instability with the buoyancy-induced

instability growth rate, which we denote as λb. The maximum growth rate of the

buoyancy-induced instability is λb =
√

−N 2 + ∂ρ ′/∂z and is obtained in the limit of
infinitely large wavenumbers (e.g. Drazin & Reid 1981). Let us compute an
(approximate but explicit) estimate of λb from the triad model. We obtain,
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λ2
b = −N 2 + ∂Σ0/∂z + ∂σ ′/∂z

= −N2 + ζ0,maxN sin θ0 sin Φ0 + ζ ′
maxN sin θ1 cos

(
1
2
Φ0

)
sin Φ1. (30)

It can be shown from this relation that, as the perturbation amplifies, a positive
value for λ2

b is first reached for a value of Φ0 varying from 0 to π/2, as the primary
wave amplitude increases (assuming sin Φ1 = 1) that is, in a RSS region. As for the
Kelvin–Helmholtz instability, λb has to be larger than ω0/2 for the buoyancy-induced
instability to be able to develop there. This implies that, for instance, ζ ′

max > 1.20 for
run 0 and ζ ′

max > 1 for run 2.
The growth rates λd and λb are plotted versus ζ ′

max in figure 12, along with the
frequency ω0/2. λd is plotted for α = 0.15, corresponding to a minimum value of
the Richardson number equal to � 0.06; λb is plotted for three different amplitudes
of the primary wave: A0 = 0.01, which illustrates the asymptotic behaviour A0 → 0,
A0 = 0.128 and A0 = 0.256 (we set sin Φ1 = 1 and Φ0 = π/4). Figure 12 shows that when
λd exceeds ω0/2, λb is always larger than λd and their relative magnitude increases
as A0 increases. We thus recover the result that buoyancy-induced instability is more
likely to develop than Kelvin–Helmholtz instability for a high-frequency wave (e.g.
Munk 1981) and quantitative and physical supports to this result are provided by the
present study.

It should be pointed out that the behaviour displayed in figure 12 is valid in
the inviscid limit while the growth rates λd and λb are associated with instability
at a very different scale. The buoyancy-induced instability is most sensitive to
viscous effects (like the parametric instability), as opposed to the Kelvin–Helmholtz
instability. Hence, if viscous effects are strong enough to damp the former instability,
Kelvin–Helmholtz instability will dominate. Only in this case would two-dimensional
simulations be appropriate for investigating the complete flow dynamics.

8. Summary and conclusion
This study has provided a detailed investigation of the instability mechanism for

an internal gravity wave of high frequency (termed the primary wave). Resonant
interaction theory has been used for this purpose and we have developed a kinematic
model of the resonant waves excited by the primary wave to investigate the spatio-
temporal organization of the energy transfers from the primary wave. We showed that
parametric instability may be viewed as an optimum scenario for extracting energy
from the primary wave. Numerical simulations performed in a vertical plane have
permitted us to validate the kinematic model for a weak steepness primary wave.
We next used the simulations and the model to study the instability dynamics as the
primary wave amplitude increases and to investigate the breaking process of the wave
field.

From resonant interaction theory and numerical simulations, we concluded that a
few resonant secondary waves with close wave vectors are amplified. They grow at
nearly identical rates and can be assumed to be independent, at least during the early
stage of the amplification process. The scale of these resonant waves is selected by
molecular effects and by the grid size. Only one value of the Prandtl number was
considered in this study (Pr = 1), but the expression of the linear damping factor of the
growth rate of the resonant waves in § 4.2 shows that increasing the Prandtl number
has the same effect as decreasing the viscosity. Hence, higher secondary wavenumbers
should be selected when the Prandtl number is increased.
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These results set the basis of the kinematic model to investigate how a perturbation
amplifies in space and time through parametric instability: the perturbation growth
is assumed to be controlled by a few independent triads of close geometry and,
therefore, only one of them need be considered to model the energy exchange with
the primary wave. The assumptions of the model are that the resonant waves of the
triad are of small scale relative to the primary wave; the phase relation between the
primary and the secondary waves is inferred from the numerical simulations.

It has been shown previously (e.g. Lombard & Riley 1996a) that the parametric
forcing of the perturbation field occurs through two mechanisms. (i) The perturbation
kinetic energy KE′ is forced through the shear of the primary wave (as for any
steady shear flow instability). We show here that the oscillating shear of the primary
wave strongly constrains the perturbation field, at a given location in the numerical
domain: its energy is under kinetic form when the primary wave shear is negative,
which maximizes the transfer from that wave, and is stored under potential form
when the primary wave shear is positive, which minimizes the reverse transfer to that
wave. Hence, the perturbation kinetic energy has the same phase as the primary wave
vorticity. (ii) The perturbation potential energy PE′ is forced through the density
gradient of the primary wave. We show that this forcing occurs twice per primary
wave period, when the latter gradient is either positive (this occurs in a region of
reduced static stability, RSS for short) or negative (increased static stability region,
ISS for short). These two stages are, however, not symmetric: perturbation kinetic
energy KE′ is transferred into potential energy PE′ in the RSS region, resulting in a
positive rate of change for PE′ while the reverse transfer in the ISS region results in
a negative rate of change for PE′.

A fundamental result of our study is that the transfer rate of potential energy
from the primary wave to the perturbation 〈PEP〉 is larger than the transfer rate
of kinetic energy 〈KEP〉 whatever the primary wave. Indeed, the ratio of 〈KEP〉 to
〈PEP〉 predicted by the model is equal to cos(θ1 − θ0) with cos θ1 = 0.5 cos θ0. This ratio
decreases to 1/2 for a very high-frequency primary wave (θ0 → 0); such a decrease is
intuitively expected since motions induced by the primary wave are nearly vertical.
It increases to 1 for a very low-frequency primary wave (θ0 → π/2); in a geophysical
context; however, Coriolis effects should be taken into account which would increase
the kinetic energy of the primary wave and thus modify the analysis.

This behaviour shows that potential energy transfer from an unstable primary
wave of small amplitude is easier than kinetic energy transfer. This is a very general
result, which has already been observed in stratified turbulence (e.g. Holloway &
Ramsden 1988) and when the linear stability of a three-dimensional internal gravity
wave is studied (Lombard & Riley 1996a). In stratified turbulence, this behaviour
implies that potential energy is transferred more efficiently than kinetic energy toward
small scales. The same implication holds here since parametric instability transfers
energy (directly, without cascade process, as noted by Pierrehumbert 1986) from the
large-scale primary wave down to the small-scale secondary waves. According to
Holloway & Ramsden (1988), the subset of two-dimensional interactions in a
three-dimensional field might be responsible for this behaviour, since the nonlinear
conservation of enstrophy in two dimensions prevents kinetic energy from being
transferred toward small scales. The incompressibility constraint, which applies to
the velocity field, but not to the density field, may also account for this behaviour
(Lesieur 1997).

The excess of perturbation potential energy to kinetic energy is compensated for
by a negative buoyancy flux to ensure the equipartitioning between these two forms
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of energy. This equipartition is necessary to maintain the efficiency of the instability
process. This implies that a counter-gradient buoyancy flux occurs at small scales, as
also noted by Holloway & Ramsden (1988) for stratified turbulence.

As in Lombard & Riley (1996a), we observe that this imbalance in energy extrac-
tion increases with the primary wave amplitude. Our detailed study shows that this is
because kinetic energy transfer (in the ζ0 < 0 region) loses efficiency relative to the op-
timum transfer (which occurs for infinitely small primary wave amplitude). Moreover,
as the primary wave amplitude increases further, the potential energy transfer from
the primary wave becomes more efficient which reinforces this imbalance.

Our computations show that, as expected, overturning occurs first (in time) in RSS
regions. Hence, the total wave field should eventually become unstable in these regions
to a (three-dimensional small-scale) buoyancy-induced instability, as a result of the
parametrically forced perturbation. The wave field may also be unstable through a
(two-dimensional large-scale) dynamical instability of the Kelvin–Helmholtz type in
the ζ0 < 0 region, where the kinetic energy of the perturbation is maximum. In our
two-dimensional computations, breaking eventually occurs through Kelvin–Helmholtz
instability, but we conclude that, unless viscous effects are strong enough, this route
to breaking is selected by the two-dimensional geometry. Hence, the final breaking
stage of the flow cannot be studied in a reliable manner with two-dimensional
simulations. This three-dimensional breaking process is well known to occur when
the steepness of the primary wave exceeds 1 (Winters & Riley 1992; Winters &
D’Asaro 1994; Andreassen et al. 1998) whatever its frequency (Lelong & Dunkerton
1998b). We showed here that this result also holds for a vanishingly small primary
wave steepness, when its frequency is high enough.

We thank M.McIntyre for helpful discussions. The simulations were performed on
the computers of IDRIS (CNRS High Performance Computer Center).
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